资源类型

期刊论文 369

会议视频 4

年份

2023 35

2022 37

2021 22

2020 28

2019 24

2018 14

2017 17

2016 15

2015 13

2014 15

2013 11

2012 5

2011 21

2010 34

2009 18

2008 23

2007 13

2006 6

2005 3

2004 4

展开 ︾

关键词

热电联产 3

多联产 2

数值模拟 2

数学模型 2

热释放速率 2

环境 2

2D—3D配准 1

6016 合金 1

9 %~12 % Cr 钢 1

&prime 1

&gamma 1

CO2利用 1

Cu(Inx 1

Cuk矩阵变换器 1

Ga1–x)Se2 1

GaAs基微结构材料 1

Inconel 718合金 1

Laves相 1

M23C6 碳化物 1

展开 ︾

检索范围:

排序: 展示方式:

Heat transfer coefficient of wheel rim of large capacity steam turbines

SHI Jinyuan, DENG Zhicheng, YANG Yu, JUN Ganwen

《能源前沿(英文)》 2008年 第2卷 第1期   页码 20-24 doi: 10.1007/s11708-008-0015-4

摘要: A way of calculating the overall equivalent heat transfer coefficient of wheel rims of large capacity steam turbines is presented. The method and formula to calculate the mean forced convection heat-transfer coefficient of the surface of the blade and for the bottom wall of the blade passage, are introduced. The heat transmission from the blade to the rim was simplified by analogy to heat transmission in the fins. A fin heat transfer model was then used to calculate the equivalent heat transfer coefficient of the blade passage. The overall equivalent heat transfer coefficient of the wheel rim was then calculated using a cylindrical surface model. A practical calculation example was presented. The proposed method helps determine the heat transfer boundary conditions in finite element analyses of temperature and thermal stress fields of steam turbine rotors.

关键词: convection heat-transfer     capacity     heat-transfer coefficient     bottom     transmission    

Experimental study of primary and secondary side coupling natural convection heat transfer characteristicsof the passive residual heat removal system in AP1000

Zhimin QIU, Daogang LU, Jingpin FU, Li FENG, Yuhao ZHANG

《能源前沿(英文)》 2021年 第15卷 第4期   页码 860-871 doi: 10.1007/s11708-021-0744-1

摘要: Passive residual heat removal heat exchanger (PRHR HX), which is a newly designed equipment in the advanced reactors of AP1000 and CAP1400, plays an important role in critical accidental conditions. The primary and secondary side coupling heat transfer characteristics of the passive residual heat removal system (PRHRS) determine the capacity to remove core decay heat during the accidents. Therefore, it is necessary to investigate the heat transfer characteristics and develop applicable heat transfer formulas for optimized design. In the present paper, an overall scaled-down natural circulation loop of PRHRS in AP1000, which comprises a scaled-down in-containment refueling water storage tank (IRWST) and PRHR HX models and a simulator of the reactor core, is built to simulate the natural circulation process in residual heat removal accidents. A series of experiments are conducted to study thermal-hydraulic behaviors in both sides of the miniaturized PRHR HX which is simulated by 12 symmetric arranged C-shape tubes. For the local PRHR HX heat transfer performance, traditional natural convection correlations for both the horizontal and vertical bundles are compared with the experimental data to validate their applicability for the specific heat transfer condition. Moreover, the revised natural convection heat transfer correlations based on the present experimental data are developed for PRHR HX vertical and lower horizontal bundles. This paper provides essential references for the PRHRS operation and further optimized design.

关键词: passive residual heat removal heat exchanger (PRHR HX)     C-shape tube     revised heat transfer correlations     coupled natural convection    

Experimental study of heat transfer coefficient with rectangular baffle fin of solar air heater

Foued CHABANE,Nesrine HATRAF,Noureddine MOUMMI

《能源前沿(英文)》 2014年 第8卷 第2期   页码 160-172 doi: 10.1007/s11708-014-0321-y

摘要: This paper presents an experimental analysis of a single pass solar air collector with, and without using baffle fin. The heat transfer coefficient between the absorber plate and air can be considerably increased by using artificial roughness on the bottom plate and under the absorber plate of a solar air heater duct. An experimental study has been conducted to investigate the effect of roughness and operating parameters on heat transfer. The investigation has covered the range of Reynolds number from 1259 to 2517 depending on types of the configuration of the solar collectors. Based on the experimental data, values of Nusselt number have been determined for different values of configurations and operating parameters. To determine the enhancement in heat transfer and increment in thermal efficiency, the values of Nusselt have been compared with those of smooth duct under similar flow conditions.

关键词: Nusselt number     flow rate     heat transfer     heat transfer coefficient     thermal efficiency     forced convection    

Natural convection heat transfer of water in a horizontal circular gap

SU Guanghui, WU Yingwei, Kenichiro Sugiyama

《能源前沿(英文)》 2007年 第1卷 第2期   页码 167-173 doi: 10.1007/s11708-007-0021-y

摘要: An experimental study on the natural convection heat transfer on a horizontal downward facing heated surface in a water gap was carried out under atmospheric pressure conditions. A total of 700 experimental data points were correlated using Rayleigh versus Nusselt number in various forms, based on different independent variables. The effects of different characteristic lengths and film temperatures were discussed. The results show that the buoyancy force acts as a resistance force for natural convection heat transfer on a downward facing horizontal heated surface in a confined space. For the estimation of the natural convection heat transfer under the present conditions, empirical correlations in which Nusselt number is expressed as a function of the Rayleigh number, or both Rayleigh and Prandtl numbers, may be used. When it is accurately predicted, the Nusselt number is expressed as a function of the Rayleigh and Prandtl numbers, as well as the gap width-to-heated surface diameter ratio; and uses the temperature difference between the heated surface and the ambient fluid in the definition of Rayleigh number. The characteristic length is the gap size and the film temperature is the average fluid temperature.

关键词: function     diameter     different independent     different characteristic     horizontal downward    

Transient analysis of thermoelastic contact problem of disk brakes

Ali BELHOCINE, Mostefa BOUCHETARA

《机械工程前沿(英文)》 2013年 第8卷 第2期   页码 150-159 doi: 10.1007/s11465-013-0266-6

摘要:

The main purpose of this study is to analyze the thermomechanical behavior of the dry contact between the brake disk and pads during the braking phase. The simulation strategy is based on computer code ANSYS11. The modeling of transient temperature in the disk is actually used to identify the factor of geometric design of the disk to install the ventilation system in vehicles. The thermal-structural analysis is then used with coupling to determine the deformation established and the Von Mises stresses in the disk, the contact pressure distribution in pads. The results are satisfactory compared to those found in the literature.

关键词: brake disks     heat flux     heat-transfer coefficient     Von Mises stress     contact pressure    

Heat transfer of phase change materials (PCMs) in porous materials

C Y ZHAO, D ZHOU, Z G WU

《能源前沿(英文)》 2011年 第5卷 第2期   页码 174-180 doi: 10.1007/s11708-011-0140-3

摘要: In this paper, the feasibility of using metal foams to enhance the heat transfer capability of phase change materials (PCMs) in low- and high-temperature thermal energy storage systems was assessed. Heat transfer in solid/liquid phase change of porous materials (metal foams and expanded graphite) at low and high temperatures was investigated. Organic commercial paraffin wax and inorganic calcium chloride hydrate were employed as the low-temperature materials, whereas sodium nitrate was used as the high-temperature material in the experiment. Heat transfer characteristics of these PCMs embedded with open-cell metal foams were studied. Composites of paraffin and expanded graphite with a graphite mass ratio of 3%, 6%, and 9% were developed. The heat transfer performances of these composites were tested and compared with metal foams. The results indicate that metal foams have better heat transfer performance due to their continuous inter-connected structures than expanded graphite. However, porous materials can suppress the effects of natural convection in liquid zone, particularly for PCMs with low viscosities, thereby leading to different heat transfer performances at different regimes (solid, solid/liquid, and liquid regions). This implies that porous materials do not always enhance heat transfer in every regime.

关键词: heat transfer     thermal energy storage     phase change materials     natural convection     porous media    

A way to explain the thermal boundary effects on laminar convection through a square duct

Liangbi WANG, Xiaoping GAI, Kun HUANG, Yongheng ZHANG, Xiang YANG, Xiang WU

《能源前沿(英文)》 2010年 第4卷 第4期   页码 496-506 doi: 10.1007/s11708-010-0020-2

摘要: A way using the reformulation of the energy conservation equation in terms of heat flux to explain the thermal boundary effects on laminar convective heat transfer through a square duct is presented. For a laminar convection through a square duct, it explains that on the wall surface, the velocity is zero, but convection occurs for uniform wall heat flux (UWHF) boundary in the developing region due to the velocity gradient term; for uniform wall temperature (UWT) boundary, only diffusion process occurs on the wall surface because both velocity and velocity gradient do not contribute to convection; for UWHF, the largest term of the gradient of velocity components (the main flow velocity) on the wall surface takes a role in the convection of the heat flux normal to the wall surface, and this role exists in the fully developed region. Therefore, a stronger convection process occurs for UWHF than for UWT on the wall surface. The thermal boundary effects on the laminar convection inside the flow are also detailed.

关键词: convective transport     heat transfer     mass transfer     laminar flow     thermal boundary effects    

Simulation of interfacial Marangoni convection in gas-liquid mass transfer by lattice Boltzmann method

Shuyong CHEN, Xigang YUAN, Bo FU, Kuotsung YU

《化学科学与工程前沿(英文)》 2011年 第5卷 第4期   页码 448-454 doi: 10.1007/s11705-011-1142-8

摘要: Interfacial Marangoni convection has significant effect on gas-liquid and/or liquid-liquid mass transfer processes. In this paper, an approach based on lattice Boltzmann method is established and two perturbation models, fixed perturbation model and self-renewable interface model, are proposed for the simulation of interfacial Marangoni convection in gas-liquid mass transfer process. The simulation results show that the concentration contours are well consistent with the typical roll cell convection patterns obtained experimentally in previous studies.

关键词: interfacial Marangoni convection     lattice Boltzmann method     gas-liquid mass transfer    

Application of entransy dissipation theory in heat convection

Mingtian XU, Jiangfeng GUO, Lin CHENG,

《能源前沿(英文)》 2009年 第3卷 第4期   页码 402-405 doi: 10.1007/s11708-009-0055-4

摘要: In the present work, formulas for calculating the rates of the local thermodynamic entransy dissipation in convective heat transfer in general, and the internal and external flows in particular, are established. Practically, these results may facilitate the application of entransy dissipation theory in thermal engineering. Theoretically they shed light on solving the contradiction of the minimum entropy production principle with balance equations in continuum mechanics.

关键词: entransy dissipation     heat convection     heat exchanger    

Augmentation of natural convective heat transfer by acoustic cavitation

Jun CAI, Xiulan HUAI, Shiqiang LIANG, Xunfeng LI,

《能源前沿(英文)》 2010年 第4卷 第3期   页码 313-318 doi: 10.1007/s11708-009-0064-3

摘要: An experimental study was conducted to investigate the effects of acoustic cavitation on natural convective heat transfer from a horizontal circular tube. The experimental results indicated that heat transfer could be enhanced by acoustic cavitation and had the best effect when the head of the ultrasonic transducer was over the midpoint of the circular tube, and the distance between the head and the tube equaled 15 mm. The augmentation at low heat flux was better than that in the case of high heat flux. Based on experimental results, the correlation formula of Nusselt number for water was obtained.

关键词: heat transfer enhancement     augmentation     acoustic cavitation     acoustic streaming     convective heat transfer    

Effects of radiation and heat source/sink on unsteady MHD boundary layer flow and heat transfer over

Krishnendu Bhattacharyya

《化学科学与工程前沿(英文)》 2011年 第5卷 第3期   页码 376-384 doi: 10.1007/s11705-011-1121-0

摘要: In this paper, an investigation is made to study the effects of radiation and heat source/sink on the unsteady boundary layer flow and heat transfer past a shrinking sheet with suction/injection. The flow is permeated by an externally applied magnetic field normal to the plane of flow. The self-similar equations corresponding to the velocity and temperature fields are obtained, and then solved numerically by finite difference method using quasilinearization technique. The study reveals that the momentum boundary layer thickness increases with increasing unsteadiness and decreases with magnetic field. The thermal boundary layer thickness decreases with Prandtl number, radiation parameter and heat sink parameter, but it increases with heat source parameter. Moreover, increasing unsteadiness, magnetic field strength, radiation and heat sink strength boost the heat transfer.

关键词: MHD boundary layer     unsteady flow     heat transfer     thermal radiation     heat source/sink     shrinking sheet     suction/injection    

Effect of heat transfer space non-uniformity of combustion chamber components on in-cylinder heat transfer

Jizu LV, Minli BAI, Long ZHOU, Jian ZHOU,

《能源前沿(英文)》 2010年 第4卷 第3期   页码 392-401 doi: 10.1007/s11708-009-0066-1

摘要: Combustion chamber components (cylinder head-cylinder liner-piston assembly-oil film) were treated as a coupled body. Based on the three-dimensional numerical simulation of the heat transfer of the coupled body, a coupled three-dimensional calculation model for the in-cylinder working process and the combustion chamber components was built with domain decomposition and boundary coupling method, which adopts the coupled three-dimensional simulation of in-cylinder working process and the combustion chamber components. The model was applied in the investigation of the influence of space non-uniformity in heat transfer among combustion chamber components on in-cylinder heat transfer. The results show that the effect of wall temperature space non-uniform distribution of combustion chamber components on heat transfer happens mainly at the end of the compression stroke and expansion stroke. Therefore, it can be concluded that wall temperature space non-uniform distribution of combustion chamber components would influence heat transfer during the intake and exhaust stroke obviously.

关键词: heat transfer     space non-uniformity     soot emission     in-cylinder     diesel    

Review of the LNG intermediate fluid vaporizer and its heat transfer characteristics

《能源前沿(英文)》 2022年 第16卷 第3期   页码 429-444 doi: 10.1007/s11708-021-0747-y

摘要: The intermediate fluid vaporizer (IFV), different from other liquefied natural gas (LNG) vaporizers, has many advantages and has shown a great potential for future applications. In this present paper, studies of IFV and its heat transfer characteristics in the LNG vaporization unit E2 are systematically reviewed. The research methods involved include theoretical analysis, experimental investigation, numerical simulation, and process simulation. First, relevant studies on the overall calculation and system design of IFV are summarized, including the structural innovation design, the thermal calculation model, and the selection of different intermediate fluids. Moreover, studies on the fluid flow and heat transfer behaviors of the supercritical LNG inside the tubes and the condensation heat transfer of the intermediate fluid outside the tubes are summarized. In the thermal calculations of the IFV, the selections of the existing heat transfer correlations about the intermediate fluids are inconsistent in different studies, and there lacks the accuracy evaluation of those correlations or comparison with experimental data. Furthermore, corresponding experiments or numerical simulations on the cryogenic condensation heat transfer outside the tubes in the IFV need to be further improved, compared to those in the refrigeration and air-conditioning temperature range. Therefore, suggestions for further studies of IFV are provided as well.

关键词: intermediate fluid vaporizer     design of structure and intermediate fluid     condensation heat transfer    

A new heat transfer correlation for supercritical fluids

Yanhua YANG, Xu CHENG, Shanfang HUANG

《能源前沿(英文)》 2009年 第3卷 第2期   页码 226-232 doi: 10.1007/s11708-009-0022-0

摘要: A new method of heat transfer prediction in supercritical fluids is presented. Emphasis is put on the simplicity of the correlation structure and its explicit coupling with physical phenomena. Assessment of qualitative behaviour of heat transfer is conducted based on existing test data and experience gathered from open literature. Based on phenomenological analysis and test data evaluation, a single dimensionless number, the acceleration number, is introduced to correct the deviation of heat transfer from its conventional behaviour, which is predicted by the Dittus-Boelter equation. The new correlation structure excludes direct dependence of heat transfer coefficient on wall surface temperature and eliminates possible numerical convergence. The uncertainty analysis of test data provides information about the sources and the levels of uncertainties of various parameters and is highly required for the selection of both the dimensionless parameters implemented into the heat transfer correlation and the test data for the development and validation of new correlations. Comparison of various heat transfer correlations with the selected test data shows that the new correlation agrees better with the test data than other correlations selected from the open literature.

关键词: super critical fluids     heat transfer     circular tubes     prediction method    

Analysis of flow and heat transfer characteristics of porous heat-storage wall in greenhouse

OUYANG Li, LIU Wei

《能源前沿(英文)》 2008年 第2卷 第4期   页码 406-409 doi: 10.1007/s11708-008-0094-2

摘要: The flow and heat transfer characteristics of porous heat-storage wall in greenhouse are studied by using the one-dimensional steady energy two-equation model for saturated porous medium. The results show that the heat exchange between the air and the solid matrix of the porous heat-storage wall depends upon the inlet air velocity, the porosity and the permeability of porous medium, and the thermal conductivity of the solid matrix. Because the incidence of solar radiation on the porous heat-storage wall is not uniform, the new composite porous solar wall with different porosity is proposed to reduce the disadvantageous effect.

关键词: incidence     thermal conductivity     heat-storage     exchange     composite    

标题 作者 时间 类型 操作

Heat transfer coefficient of wheel rim of large capacity steam turbines

SHI Jinyuan, DENG Zhicheng, YANG Yu, JUN Ganwen

期刊论文

Experimental study of primary and secondary side coupling natural convection heat transfer characteristicsof the passive residual heat removal system in AP1000

Zhimin QIU, Daogang LU, Jingpin FU, Li FENG, Yuhao ZHANG

期刊论文

Experimental study of heat transfer coefficient with rectangular baffle fin of solar air heater

Foued CHABANE,Nesrine HATRAF,Noureddine MOUMMI

期刊论文

Natural convection heat transfer of water in a horizontal circular gap

SU Guanghui, WU Yingwei, Kenichiro Sugiyama

期刊论文

Transient analysis of thermoelastic contact problem of disk brakes

Ali BELHOCINE, Mostefa BOUCHETARA

期刊论文

Heat transfer of phase change materials (PCMs) in porous materials

C Y ZHAO, D ZHOU, Z G WU

期刊论文

A way to explain the thermal boundary effects on laminar convection through a square duct

Liangbi WANG, Xiaoping GAI, Kun HUANG, Yongheng ZHANG, Xiang YANG, Xiang WU

期刊论文

Simulation of interfacial Marangoni convection in gas-liquid mass transfer by lattice Boltzmann method

Shuyong CHEN, Xigang YUAN, Bo FU, Kuotsung YU

期刊论文

Application of entransy dissipation theory in heat convection

Mingtian XU, Jiangfeng GUO, Lin CHENG,

期刊论文

Augmentation of natural convective heat transfer by acoustic cavitation

Jun CAI, Xiulan HUAI, Shiqiang LIANG, Xunfeng LI,

期刊论文

Effects of radiation and heat source/sink on unsteady MHD boundary layer flow and heat transfer over

Krishnendu Bhattacharyya

期刊论文

Effect of heat transfer space non-uniformity of combustion chamber components on in-cylinder heat transfer

Jizu LV, Minli BAI, Long ZHOU, Jian ZHOU,

期刊论文

Review of the LNG intermediate fluid vaporizer and its heat transfer characteristics

期刊论文

A new heat transfer correlation for supercritical fluids

Yanhua YANG, Xu CHENG, Shanfang HUANG

期刊论文

Analysis of flow and heat transfer characteristics of porous heat-storage wall in greenhouse

OUYANG Li, LIU Wei

期刊论文